Potent and selective antisense oligonucleotides targeting the transforming growth factor beta (TGF-β) isoforms in advanced glaucoma: a preclinical evaluation

Supplementary Files

Figure 1
Figure 2
Figure 3

How to Cite

Hasenbach K, Van Bergen T, Vandewalle E, De Groef L, Van Hove I, Moons L, Stalmans I, Fettes P, Leo E, Wosikowski K, Janicot M. Potent and selective antisense oligonucleotides targeting the transforming growth factor beta (TGF-β) isoforms in advanced glaucoma: a preclinical evaluation. MAIO [Internet]. 2016 Dec. 15 [cited 2022 Jun. 25];1(2):20-8. Available from: https://www.maio-journal.com/index.php/MAIO/article/view/21

Copyright notice

Authors who publish with this journal agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication, with the work twelve (12) months after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

  2. After 12 months from the date of publication, authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.


antisense oligonucleotide; glaucoma; intraocular administration; transforming growth factor beta


Purpose: ISARNA Therapeutics is developing highly potent and selective LNA-modified ASO gapmers targeting TGF-β1 and TGF-β2 mRNA. In the field of ophthalmology, glaucoma, the second leading cause for blindness in the US, has been linked to TGF-β activation as a key driver. ISTH0036 is a 14-mer phosphorothioate Locked Nucleic Acid- (LNA) modified antisense oligonucleotide gapmer, targeting the sequence of TGF-β2 mRNA and was developed for therapeutic intervention in ocular diseases. It was shown to effectively and potently downregulate target mRNA in a dose-dependent manner in relevant cell-based assays, as well as leading to target engagement in anterior eye segment tissues upon intravitreal administration (Isarna proprietary information). The aim of this study was to evaluate the therapeutic potential of ISTH0036 in murine models of glaucoma filtration surgery (GFS) following different intraocular administrations.

Methods: A murine model of glaucoma filtration surgery has been used to evaluate the effect of intraocular ISTH0036 administration on post-operative wound healing. Bleb size and bleb survival were determined after different intraocular administrations of saline, control scrambled oligonucleotide or ISTH0036 (at day of surgery and after two weeks).

Results: Intraocular administrations of ISTH0036 lead to a significant effect on bleb area and survival, as well as decreasing scarring (downregulation of collagen-1 and -3 fibers) in a murine glaucoma filtration surgery model.

Conclusion: Consistent with the expected molecular mechanism of action and demonstrated pharmacokinetic (PK) and pharmacodynamic (PD) properties following intraocular administration, preclinical data with ISTH0036 in murine glaucoma filtration surgery model support the current exploration of the drug candidate in advanced glaucoma patients undergoing trabeculectomy.



Connor TB, Jr., Roberts AB, Sporn MB, Danielpour D, Dart LL, Michels RG, et al. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J Clin Invest. 1989;83(5):1661-6. 10.1172/JCI114065.

Kria L, Ohira A, Amemiya T. Immunohistochemical localization of basic fibroblast growth factor, platelet derived growth factor, transforming growth factor-beta and tumor necrosis factor-alpha in the pterygium. Acta Histochem. 1996;98(2):195-201.

Kon CH, Occleston NL, Aylward GW, Khaw PT. Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci. 1999;40(3):705-12.

Wormstone IM. Posterior capsule opacification: a cell biological perspective. Exp Eye Res. 2002;74(3):337-47. 10.1006/exer.2001.1153.

Engler C, Chakravarti S, Doyle J, Eberhart CG, Meng H, Stark WJ, et al. Transforming growth factor-beta signaling pathway activation in Keratoconus. American journal of ophthalmology. 2011;151(5):752-9 e2. 10.1016/j.ajo.2010.11.008.

Prendes MA, Harris A, Wirostko BM, Gerber AL, Siesky B. The role of transforming growth factor beta in glaucoma and the therapeutic implications. Br J Ophthalmol. 2013;97(6):680-6. 10.1136/bjophthalmol-2011-301132.

Hirase K, Ikeda T, Sotozono C, Nishida K, Sawa H, Kinoshita S. Transforming growth factor beta2 in the vitreous in proliferative diabetic retinopathy. Arch Ophthalmol. 1998;116(6):738-41.

Granstein RD, Staszewski R, Knisely TL. Aqueous humor contains transforming growth factor-beta and a small (less than 3500 daltons) inhibitor of thymocyte proliferation. J Immunol. 1990;144(8):3021-7.

Jampel HD, Quigley HA, Kerrigan-Baumrind LA, Melia BM, Friedman D, Barron Y, et al. Risk factors for late-onset infection following glaucoma filtration surgery. Arch Ophthalmol. 2001;119(7):1001-8.

Pfeffer BA, Flanders KC, Guérin CJ, al. E. Transforming growth factor beta 2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye. Exp Eye Res. 1994;59(3):323-33.

Saika S. TGFbeta pathobiology in the eye. Lab Invest. 2006;86(2):106-15.

Freedman J, Iserovich P. Pro-Inflammatory Cytokines in Glaucomatous Aqueous and Encysted Molteno Implant Blebs and Their Relationship to Pressure. Invest Ophthalmol Vis Sci. 2013;54:4851–5. 10.1167/.

Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 1994;59(6):723-7.

Inatani M, Tanihara H, Katsuta H, Honjo M, Kido N, Honda Y. Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2001;239(2):109-13.

Picht G, Welge-Luessen U, Grehn F, Lutjen-Drecoll E. Transforming growth factor beta 2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefes Arch Clin Exp Ophthalmol. 2001;239(3):199-207.

Schlotzer-Schrehardt U, Zenkel M, Kuchle M, Sakai LY, Naumann GO. Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res. 2001;73(6):765-80.

Ochiai Y, Ochiai H. Higher concentration of transforming growth factor-beta in aqueous humor of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol. 2002;46(3):249-53.

Yamamoto N, Itonaga K, Marunouchi T, Majima K. Concentration of transforming growth factor beta2 in aqueous humor. Ophthalmic Res. 2005;37(1):29-33.

Ozcan AA, Odzdemir N, Canataroglu A. The aqueous levels of TGF-β2 in patients with glaucoma. International Ophthalmology. 2004;25:19-22.

Min SH, Lee TI, Chung YS, al. E. Transforming growth factor-beta levels in human aqueous humor of glaucomatous, diabetic and uveitic eyes. Korean J Ophthalmol. 2006;20(3):162-5.

Trivedi RH, Nutaitis M, Vroman D, Crosson CE. Influence of race and age on aqueous humor levels of transforming growth factor-beta 2 in glaucomatous and nonglaucomatous eyes. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics. 2011;27(5):477-80. 10.1089/jop.2010.0100.

Pena JD, Taylor AW, Ricard CS, Vidal I, Hernandez MR. Transforming growth factor beta isoforms in human optic nerve heads. Br J Ophthalmol. 1999;83(2):209-18.

Quigley HA. Glaucoma. Lancet. 2011;377(9774):1367-77.

Fuchshofer R. The pathogenic role of transforming growth factor-beta2 in glaucomatous damage to the optic nerve head. Exp Eye Res. 2011;347(1):279-90. S0014-4835(10)00225-3 [pii]

1016/j.exer.2010.07.014 [doi].

Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331(19):1286-92.

Rohen JW, Witmer R. Electron microscopic studies on the trabecular meshwork in glaucoma simplex. Graefes Arch Clin Exp Ophthalmol. 1972;183(4):251-66.

Tektas OY, Lütjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res. 2009;88(4):763-75.

Rigo F, Hua Y, Krainer AR, Bennett CF. Antisense-based therapy for the treatment of spinal muscular atrophy. J Cell Biol. 2012;199(1):21-5. 10.1083/jcb.201207087.

Schlunegger MP, Grutter MG. An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2. Nature. 1992;358(6385):430-4.

Seet LF, Lee WS, Su R, Finger SN, Crowston JG, Wong TT. Validation of the glaucoma filtration surgical mouse model for antifibrotic drug evaluation. Mol Med. 2011;17(5-6):557-67. 10.2119/molmed.2010.00188.

Van Bergen T, Jonckx B, Hollanders K, Sijnave D, Van de Velde S, Vandewalle E, et al. Inhibition of placental growth factor improves surgical outcome of glaucoma surgery. J Cell Mol Med. 2013;17(12):1632-43. 10.1111/jcmm.12151.

Van Bergen T, Vandewalle E, Moons L, Stalmans I. Complementary effects of bevacizumab and MMC in the improvement of surgical outcome after glaucoma filtration surgery. Acta Ophthalmol. 2015;93(7):667-78. 10.1111/aos.12766.

Aihara M, Lindsey JD, Weinreb RN. Aqueous Humor Dynamics in Mice. Investigative Opthalmology & Visual Science. 2003;44(12):5168. 10.1167/iovs.03-0504.