Mathematical modeling of ocular and cerebral hemo-fluid dynamics: application to VIIP

How to Cite

Salerni F, Repetto R, Harris A, Pinsky P, Prud’homme C, Szopos M, Guidoboni G. Mathematical modeling of ocular and cerebral hemo-fluid dynamics: application to VIIP. MAIO [Internet]. 2018 Jun. 18 [cited 2024 Jun. 16];2(2):64-8. Available from:

Copyright notice

Authors who publish with this journal agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication, with the work twelve (12) months after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

  2. After 12 months from the date of publication, authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.


blood flow; intracranial pressure; intraocular pressure (IOP); visual impairment; intracranial pressure (VIIP) syndrome


This work aims at investigating the interactions between the flow of fluids in the brain and eyes, and their potential implications in the development of visual impairment and intracranial pressure (VIIP) syndrome in astronauts. We propose a reduced (0-D) mathematical model of fluid circulation in the eyes and brain, which is embedded into a simplified whole-body circulation model. This model allows us to predict fluid redistribution in the upper body vasculature as well as variation of the intracranial (ICP) and intraocular (IOP) pressures. The model results suggest that, by taking into account some eff ects of microgravity, it is possible to observe, on one hand, an increase in IOP, and on the other, a decrease in blood flow circulation in the choroid and ciliary body. These findings provide clues for the role that vascular components may play in VIIP pathogenesis, for which astronauts could be screened on Earth and in-flight.


Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. finite element modeling in optic nerve. Invest Ophthalmol Vis Sci. 2004;45(12):4378–4387.

Sigal IA, Hongli Y, Roberts MD, Burgoyne CF, Downs CJ. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific

models. Invest Ophthalmol Vis Sci. 2011;52(3):1896–1907.

Sigal IA, Grimm JL, Jan NJ, Reid K, Minckler DS, Brown DJ. Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci. 2011;55(1):1–15.

Causin P, Guidoboni G, Harris A, Prada D, Sacco R, Terragni S. A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math Biosci. 2014;(257):33–41.

Guidoboni G, Harris A, Carichino L, Arieli Y, Siesky BA. Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model. Math Biosci Eng. 2014;(11):523–546.

Biot MA. General theory of of three-dimensional consolidation. J Appl Phys. 1941;(12):155–164.

Biot MA. Theory of finite deformations of porous solids. Ind Univ Math J. 1972;21:597–620.

Larchè F, Cahn JW. Linear theory of thermomechanical equilibrium solids under stress. Acta. Metall. 1973;21:1051–1063.

Larchè F, Cahn JW. The interactions of composition and stress in crystalline solids. J Res Natl Bur Stand. 1984;89:467–500.

Honga W, Zhaoa X, Zhoua J, Suo Z. A theory of coupled diusion and large deformation in polymeric gels. J Mechan Phys Solids. 2008;56:1779–1793.

Eshelby JD. Elastic energy momentum tensor. J Elasticity. 1975;5:331–335.