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Abstract

Aim: To familiarize clinicians with clinical genomics, and to describe the potential 
of cloud computing for enabling the future routine use of genomics in eye hospital 
settings.
Design: Review article exploring the potential for cloud-based genomic pipelines 
in eye hospitals.
Methods: Narrative review of the literature relevant to clinical genomics and cloud 
computing, using PubMed and Google Scholar. A broad overview of these fields is 
provided, followed by key examples of their integration.
Results: Cloud computing could benefit clinical genomics due to scalability 
of resources, potentially lower costs, and ease of data sharing between 
multiple institutions. Challenges include complex pricing of services, costs 
from mistakes or experimentation, data security, and privacy concerns. 
Conclusions and future perspectives: Clinical genomics is likely to become more 
routinely used in clinical practice. Currently this is delivered in highly specialist 
centers. In the future, cloud computing could enable delivery of clinical genomics 
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services in non-specialist hospital settings, in a fast, cost-effective way, whilst 
enhancing collaboration between clinical and research teams.

Keywords: clinical genomics, cloud computing, hospital, ophthalmology, 
sequencing

1. Introduction

For over three decades, researchers have been anticipating the potential for 
genomics to revolutionize clinical practice.1–5 The completion of the Human 
Genome Project6,7 has led to groundbreaking discoveries that are being applied 
for the prevention, diagnosis, and management of disease.8 However, real-world 
uptake in medicine is still limited.

The majority of research has involved genome-based discovery of links between 
genetic variants and diseases, with less than 2% of the literature examining how 
to apply these into clinical practice.5,8 The American College of Medical Genetics 
and Genomics promotes standardized reporting of clinically actionable genes. 
Their most recent recommendations included a minimum set of 59 genes where 
variants should be reported in genomics studies. The aim was to identify and 
manage highly penetrant genetic disorders by detecting potentially pathogenic 
variants in genomic data.9,10 This list is by no means exhaustive and, for example, 
the RPE65 gene, which is associated with retinal dystrophy and is now treatable, 
is currently not on this list.11 Further to this, because our knowledge of healthy 
genetic variation is limited, especially in individuals of African descent who are 
under-represented in genomic studies,12 it is often challenging to determine 
whether a genetic variant in one of these genes is truly pathogenic and hence 
should be acted on. Therefore, there is a great need for creating large compre-
hensive and ethnically diverse databases of genetic variation through genomic 
initiatives to facilitate the interpretation of genetic variants.

In the UK, there are a growing number of large genomic initiatives that aim to 
discover the genetic cause of cancers and rare diseases in UK National Health 
Service (NHS) patients from participating hospitals.13 These genomics studies 
generate very large amounts of data which currently require research-specialist 
organizations such as Genomics England, the Broad Institute, or resources such 
as university High Performance Computing (HPC) for analysis and storage. Due to 
their size and complexity, these data, although generated from patients, are rarely 
integrated back into hospital systems, which limits their utility for clinical care 
beyond research. This also presents challenges around data security and privacy 
when genomics information is analyzed and transferred between organizations.

Cloud computing may overcome some of these technical challenges and 
allow health care organizations like the NHS to integrate genomic analysis 



Cloud-based genomics pipelines for ophthalmology 103

back into the health care setting for patient benefit.14-17 The National Institute 
of Standards and Technology (NIST) defines cloud computing as “a model for 
enabling ubiquitous, convenient, on-demand network access to a shared pool 
of configurable computing resources”.18 These resources include data managed 
storage, computing power, and networks for sharing, often provided as a pay-as-
you-go service. This avoids the need to invest in additional IT staff and hardware 
locally, providing extremely flexible and scalable resources instead. The potential 
long-term cost savings and easily scalable up-to-date infrastructure therefore 
make cloud computing attractive to hospitals or clinics with limited or ageing 
IT resources and few dedicated members of staff for support. In the UK, cloud 
adoption is growing. The government has had a “cloud first” policy since 2017, 
encouraging digital services to be run on cloud platforms from inception.19 NHS 
Digital has since expanded this scope, supporting the development of networked 
services for health and social care.20

In health care, cloud computing has already been applied in six broad domains:14 
telemedicine, medical imaging, public health, hospital management, therapy, 
and secondary use of data. However, as of yet, few hospitals have leveraged cloud 
technology for integrating genomics data. One notable example is the partnership 
between Google and Mayo Clinic.21 The Mayo Clinic undertakes both research and 
clinical sequencing projects, and using Google Cloud Platform (GCP) has paved 
the way towards scaling these to involve hundreds of thousands of patients.22 In 
addition, the Broad Institute has collaborated with GCP to build tools such as the 
Genome Analysis Toolkit (GATK), which will greatly contribute to the integration of 
clinical genomics and research. 

In this review, we first describe current genomics practices before outlining 
our vision of how cloud computing may facilitate the integration of genomics 
into routine clinical practice in the future and specifically in ophthalmology. Our 
focus is specifically on eye hospitals for two main reasons. Firstly, ophthalmic 
clinical practice is heavily image-based, and therefore certain eye hospitals may 
likely already have cloud-based systems in place for imaging and telemedicine. 
Secondly, genomics is already an important part of eye health care with the 
development of gene therapies to treat specific inherited conditions but also, in 
the future, for routine management of many conditions.23

2. Genomics in clinical practice

2.1. Introduction to genomics
Genomics refers to the sequencing of the entire DNA sequence from an individual, 
which is composed of 3.9 billion base pairs. DNA is split into chromosomes, of 
which there are 23 pairs in humans, and these are contained within the nucleus 
of most cells in our body. Broadly, the DNA sequence is made of coding regions, 
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which define genes that code for proteins (the units of functionality in our bodies), 
as well as noncoding regions, which may have a range of functions, including a 
regulatory function on the expression of genes and hence the creation of proteins. 
The variation in DNA, genomic variation, is what makes us unique, but also what 
makes some of us more vulnerable to certain diseases. This genomic variation is 
therefore the subject of much research and may be useful clinically. The process 
of identifying clinically relevant genomic variation is known as “genetic testing” 
and is a routine part of certain ophthalmology subspecialties such as inherited 
eye diseases. The methods for performing genetic testing have matured consid-
erably over the last four decades so that we now have fast, reliable, cheap, and 
high-throughput technology for sequencing DNA, known as next-generation 
sequencing (NGS).24,25

Inherited eye diseases are a major cause of irreversible blindness in many 
countries, among both pediatric and working-age populations.26-28 Inherited ret-
inopathies alone affect around 1 in 2,000 people worldwide.29 These debilitating 
disorders have traditionally been thought to be incurable, but many therapeutic 
approaches are being developed, often targeting genetic defects.30 Hence, genetic 
testing is a necessary first step to enable these gene-targeted treatments. For 
example, patients with Leber’s congenital amaurosis (a severe inherited cause 
of vision loss) harboring mutations in the RPE65 gene may be treated with gene 
replacement therapy, which has been shown to be efficacious and safe.11 Addi-
tionally, genetic diagnosis has a direct impact on family planning, especially for 
X-linked disorders such as retinitis pigmentosa.31 As a result, genetic testing is 
becoming an increasingly popular investigation in ophthalmology.32

The examples described so far often rely on targeted genetic testing, which 
usually only tests specific regions of DNA for a specific type of variation. The data 
produced is thus of limited use beyond the specific condition tested and does not 
enable future discovery of other types of variation beyond the examined region. 
However, thanks to the drop in the cost of NGS, genomics approaches previously 
limited to large research projects such as the UK Biobank33 are now becoming 
part of health care. Genomic data, if sufficiently comprehensive, may be a lifelong 
source of information for patients. In the UK, the NHS is rolling out genomic testing 
into clinical practice, spearheaded by the NHS Genomic Medicine Service.34 
This is matched by a worldwide investment of > 4 billion USD in the integration 
of genomics into health care systems.35 The stage is therefore set for genomics 
to become integrated into routine clinical practice. This is becoming a reality in 
oncology36 and we believe that ophthalmology will follow suit imminently. 

We will first outline current clinical pathways that use genomics in ophthal-
mology and provide a summary of genomic data analysis and technical consid-
erations. We will then show how these considerations can be met in a health care 
setting with cloud computing.
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2.2. The genomics pathway in ophthalmology
Clinical genomics is currently predominantly targeted at specific known or 
suspected hereditary conditions37 such as retinitis pigmentosa38-43 and its related 
syndromic variants,44-47 macular dystrophies,48-50 and some metabolic diseases.51-53 
These inherited retinal dystrophies account for not only severe visual impairment 
in young people, but also a huge socioeconomic impact on society.54 The current 
workflow in clinical genomics is summarized in Figure 1; currently, results are 
obtained in 2–6 months or longer depending on individual circumstances.32 The 
clinical utility of genetic screening for inherited retinal diseases includes potential 
gene-therapy treatment, genetic counselling, and eligibility for clinical trials.55

2.2.1. The decision to proceed with genomics
Doctors may order genome sequencing to help fine-tune diagnosis or treatment 
plans. This necessitates a referral to a specialist, tertiary center for clinical 
genomics. In England, this is provided by the NHS Genomic Medicine Service 
(similar services operate in Scotland, Wales, and Northern Ireland), in 13 Genomic 
Medicine Centers. Patients must fulfil specific criteria for referral, specified in 
the National Genomic Test Directory,56 which includes clinical indications, genes, 
and test methods that are currently NHS-approved. These are primarily rare 
conditions with many associated genes such as Bardet-Biedl syndrome (Table S1, 
S2).

A multidisciplinary team (MDT) typically discusses the case and determines 
what sort of genetic study is most appropriate. The MDT consists of nursing staff, 
an attending physician, and several subspecialists (e.g., pediatricians, clinical 
geneticists, fertility specialists, endocrinologists, etc.). The decision to go ahead 
with a genetic test involves genetic counselling with the patient and their family.  
It is important to define the patient’s expectations and motivations of the 
proposed genetic testing, including the desire to enroll in research studies. 
Genetic counsellors often recruit patients to clinical trials, and must therefore be 
transparent about their roles in the study team as well as the effect this may have 
on patient decision making.57 Some important points of discussion during genetic 
counselling are described in depth elsewhere.58

In addition to genetic counselling, those ordering and providing the genetic 
test should consider whether any issues apply relating to the following ethi-
co-legal principles: consent, disclosure of information, confidentiality, and data 
protection.59 When sequencing the whole genome, thousands of genetic variants 
will be found, some of which may be pathological, but the majority of which 
will have no effect on health. The ethico-legal implications of this are profound 
and currently unsolved: some view it as an ethical obligation to report and act 
on incidental pathological findings, whilst others hold higher value to patient 
autonomy and the “right not to know”, especially when it comes to children who 
may not be Gillick competent to consent.60 It is therefore critical that carefully 
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informed consent is obtained before taking samples, including a plan of action in 
the event that incidental pathological variants are discovered. 

In most cases, a peripheral blood sample will be enough to perform any genomic 
study. In England, samples are sent to be sequenced at one of the seven NHS 
Genomic Laboratory Hubs. To supplement this, the attending physician should 
consider the need for complementary tests such as ocular coherence tomography 
(OCT), fundus autofluorescence (FAF), electrophysiology, blood tests, and neuroim-
aging. A detailed family history is obtained, and this is combined with the complete 
and detailed clinical picture. Here, artificial intelligence approaches that predict 
gene-phenotype correlations from retinal scans61 as well as from standardized 
descriptive phenotypes using the Human Phenotype Ontology (HPO)62,63 can be 
used for selecting the type of genetic test. The HPO project provides a standardized 
and controlled vocabulary linking phenotypes with information about genes (e.g., 
Bardet-Biedl syndrome: Table S1, S2).64,65

2.2.2. Types of genomics technologies used in clinical practice
Several types of genomics studies are available to clinicians. These include 
array-based studies that test variations in segments of DNA through probe hybrid-
ization. These have traditionally been the first-line genomic studies of choice in 
clinical practice.66,67 However, these methods are template-based and hence cannot 
detect novel variation. More versatile and diagnostically useful NGS techniques 
(whole genome and whole exome sequencing) are now increasingly available to 
clinicians.68

Whole genome sequencing (WGS) includes both coding and noncoding DNA 
regions, giving a complete view of the genome. Currently, this is achieved by 
short-read sequencing, where short sequences of approximately 100–200 base 
pairs each are aligned to the human reference genome, eventually covering the 
entire genome. However, whole exome sequencing (WES) is still more commonly 
used in clinical genomics.56 WES is similar to WGS, but only involves sequencing of 
the coding regions of the genome (roughly 1% of the whole genome) and is therefore 
currently cheaper.69 WES also allows for better accuracy of sequencing (higher 
sequencing depth) due to the lower coverage of the genome. Gene panel testing, 
as offered by the diagnostic labs, are in fact performing WES on a subset of genes.

2.2.3. Reporting results of genetic studies
After sequencing, clinical genetic reports are validated by a senior clinical scientist 
and forwarded to the referring clinician. Reports include a summary of sequencing 
findings (i.e., any pathogenic, likely-pathogenic variants, or variants of unknown sig-
nificance), clinical implications, and recommended further testing for the patient 
or their family. The referring clinician is then responsible for explaining test results, 
aided by a genetic counsellor, and offering appropriate management or treatment;70 
this discussion should cover several key areas. Often, patients are informed about 
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ongoing or future clinical trials71 that may be of benefit. Due to the hereditary nature 
of many genetic conditions, family screening is often encouraged in the form of 
clinical and genetic testing. Another key consideration is family planning and repro-
ductive choices. This is usually considered on a case-by-case basis, taking into 
account the cultural and religious beliefs of the patient and their family.32 Finally, 
genomic studies may yield inconclusive results. In these cases, results from several 
family members could provide valuable information about a variant’s likelihood of 
pathogenicity and its inheritance, particularly if the analysis includes both affected 
and not affected individuals.

3. Introduction to cloud computing

Cloud computing is the use of storage and computational services accessed via the 
Internet (i.e., the “cloud”), instead of directly owning and maintaining the hardware 
(Fig. 2). Applications using this infrastructure are scalable, location-independent, 
and have significantly lower overhead costs. In particular, the maintenance and 
security of high-performance hardware is carried out by the expert cloud provider, 
who also enables the users to rapidly increase or decrease the amount of computing 

Fig. 2. General concepts in cloud computing. Cloud services generally consist of products 
to assist with the storage, computation, and sharing of data. Examples offered by Amazon 
Web Services are shown in magenta; further examples are provided in Table 1. This data 
may be uploaded to a remote data center via a regular internet connection. An individual 
in a different geographic location may be able to configure the computational resources in 
the cloud (e.g., CPUs, GPUs) to analyze the data. The raw data or the results of analysis may 
be accessed using databases and easily shared with collaborators from any geographical 
location with internet access.



Cloud-based genomics pipelines for ophthalmology 109

resources being used at any moment. This makes them ideally suited for processing 
large amounts of scientific data and for providing a reliable service.

3.1. Services
Cloud providers can deliver different types of services depending on the needs of 
the user. The most common service models are infrastructure, platform, or software 
as a service. For example, an Infrastructure as a Service (Iaas) cloud might provide 
access to a server, a Platform as a Service (PaaS) cloud might provide an operating 
system, and a Software as a Service (SaaS) cloud might provide data analysis 
software. Further discussion about the nuances of each service model is beyond the 
scope of this review and described in detail elsewhere.72

3.2. Availability and accessibility
Cloud providers deliver their service through many data centers across the world, 
usually split into “regions”. A cloud can be deployed as a public, private, or hybrid 
service according to who is running the data centers. For example, popular public 
cloud providers include Google Cloud Platform (GCP), Microsoft Azure, IBM Cloud, 
Alibaba Cloud, and Amazon Web Services (AWS). These companies maintain their 
own data centers and lease their resources to users, usually on a pay-as-you-go 
basis. This is simpler and may be cheaper than running a private cloud, where the 
user maintains their exclusively owned data center. However, the advantage of a 
private cloud is that it ensures the organization’s direct control over the security 
and privacy of their software and data. Virtual private clouds (VPCs) are a way to 
benefit from the security of a private cloud with the simplicity of a public cloud 
service. For example, Amazon VPC allows the creation of an isolated section of their 
public cloud for specific organizations so that computing resources are not shared 
with other users. VPCs are essential to health care organizations to ensure security 
and confidentiality of patient data, and a growing number of hospitals now have 
access to these.

Table 1. Examples of cloud tools offered by the current main cloud service providers. 
Information is available through each company’s website, and subject to change.

Provider Storage Computation Sharing/Databases

GCP Cloud Storage Compute Engine BigQuery

AWS Amazon S3, Glacier Amazon EC2 Amazon RDS

Azure Azure Data Lake Storage Azure Virtual Machines Azure databases

IBM IBM Cloud Object 
Storage

IBM Cloud Bare Metal/
Virtual Servers

IBM Cloudant

Alibaba 
Cloud

Storage Capacity Unit Elastic Compute 
Service

ApsaraDB for PolarDB
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3.3. Compute and storage
Cloud service providers typically offer tools for data storage, computation, and 
sharing. Some examples are shown in Table 1. In addition to these primary tools, 
cheap alternatives are often provided. For example, “Preemptible virtual machine 
instances” from GCP and “Spot instances” from AWS are products that can provide 
computing power at a much lower price. However, instances may be stopped at 
any time by the cloud service provider when the computing resources are required 
for maintenance or by another user with a longer-term plan. These temporary 
instances are therefore most suited to batch analysis jobs that can be paused. 

4. Genomics analysis in the cloud

In this section, we provide more technical details about genomics, including the 
analysis techniques typically employed when processing sequencing data, the data 
produced (Table 2), and the hardware and infrastructure requirements for this. This 
sequence of bioinformatic analysis steps is commonly referred to as a “genomics 
pipeline”, which is illustrated in Figure 3. A vast array of tools exists to complete 
each of these steps and a detailed analysis is beyond the scope of this review. 
Instead, we provide a broad overview of techniques, using selected examples to 
illustrate how genomics pipelines work and how these can be enhanced by cloud 
computing.

4.1. Storage and data access
Files containing genomic data can be very large (Table 2). Depending on its use, 
data may be stored as long-term archival storage (i.e., in the range of several 
years), short-term storage ((in the range of weeks to months), or storage only for 
the duration of data analysis. Different hardware is required for each use-case. For 
very long-term archiving, magnetic tape storage is often used since it is offline, 
energy-efficient, and extremely reliable. The downside is that it is time-consum-
ing and inefficient to subsequently access these archives. Solid state drives (SSDs) 
provide the fastest reading and writing speeds, but this is the most expensive form 
of storage, while hard disk drives (HDDs) provide large amounts of space at a much 
lower cost, which is useful for longer-term storage. During typical analysis, most 
files are stored in standard networked hard drives, and specific files are moved 
onto SSD storage when required for analysis, then deleted shortly afterwards. 
Most cloud providers offer these different types of storage.

4.2. Next-generation sequencing
NGS techniques such as WGS and WES typically generate millions of short-read 
sequences that need to be processed before clinically relevant findings can be 
made. If we imagine that each individual genome is a book, then the process 
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Table 2. File types and typical sizes per file type, from least to most processed

File type WES WGS

FASTQ 8 GB 40 GB

BAM 16 GB 120 GB

VCF 100 MB 400 MB

CSV 200 MB 2 GB

Fig. 3. A genomics pipeline. Next-generation sequencing is the commonest method of DNA 
sequencing for genomics currently. This generates raw short-read data which is sent to 
high-performance computing clusters or uploaded to the cloud if cloud-based platforms are 
used. This raw data consists of millions of short sequences that must be pieced together by 
alignment to a reference genome. The aligned genome is then analyzed, and any differences 
to the reference genome are recorded as variants. There are classified as significant, insig-
nificant, or unknown significance, with respect to biological function.  This information can 
be used for guiding clinical decisions and is also used for further research studies. Typical file 
sizes for a genome sequenced at a depth of 30x to 50x are indicated in blue. 
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is akin to finding interesting variations of a hand-copied book against the 
original copy (the reference genome). Since the copied book (the genome to be 
sequenced) cannot be read as a whole, it must be shredded into small pieces 
before being read, usually hundreds of letters (bases) long. Firstly, each shredded 
piece is positioned using the original as a reference (sequence alignment), only 
after which variations to the original copy can be identified (variant calling). Each 
variation will be labelled based on its location, context, and frequency in the 
human population, and categorized before it can be evaluated for its pathogenic 
potential (annotation), which can then be used to prioritize variations of interest 
(variant prioritization). Quality control can be applied at each step to ensure 
reliability.

Companies such as Illumina, Macrogen, Novogene, and BGI provide a 
sequencing service. The raw data files produced from short-reads produced from 
a sequencing run need to be downloaded from the sequencing services. These 
data files are represented in text format using the FASTA format or its extension, 
the FASTQ format, which also contains read-quality information. File sizes for an 
individual genome are typically 8 GB and 40 GB for WES and WGS, respectively, 
for 100x coverage. These files are usually processed once to produce Sequence 
Alignment Mapping (SAM) files (see below) and can usually be archived or even 
deleted afterwards. FASTA and FASTQ files can therefore be stored in long-term 
storage such as Glacier from AWS (Table 1).

4.3. Alignment
The FASTA or FASTQ short-read sequence data is next mapped to a version of 
the human reference genome to produce SAM files. The SAM file assigns each 
short-read to a location on the human genome. This file can be used to look 
for large genetic variants (insertions or deletions), to ‘phase’ variants (identify 
whether two or more variants come from the same parent), or to validate a genetic 
variant. These files are accessed frequently for manual inspection to confirm 
whether called variants are supported by the aligned reads. SAM files are typically 
compressed into Binary Alignment Mapping (BAM) files to save space. Typical sizes 
of BAM files are 16 GB for WES and 120 GB for WGS depending on the depth of 
coverage. Since BAM files contain extra information about where the reads map 
on the human genome, their quality, their orientation and their pairing, the file 
sizes are larger than the FASTQ format.

Sequence alignment is the most time-consuming step of the genomics pipeline, 
which may typically take up to several hours or even days to complete. Fortunately, 
tools now exist that take advantage of distributed computing to spread the com-
putational workload between many computers (e.g., HPC nodes), thus speeding 
up the process.

Cloud-based workflows also enable optimization with systems such as DRAGEN 
(Dynamic Read Analysis for GENomics), which is a specialized platform provided 
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by Illumina, consisting of hardware and software dedicated to genomics analysis. 
In the DRAGEN-GATK collaboration, developers from Illumina and The Broad 
Institute closely collaborate, taking advantage of hardware acceleration from 
DRAGEN and analysis software from GATK.73 

4.4. Variant calling
Once aligned, identification of small-scale mismatches (i.e., “variants”) against the 
reference genome, also known as variant calling, can be obtained using software 
such as the GATK74 or Google DeepVariant.75 Both these approaches are popular, as 
they offer machine learning-based methods of calling and filtering variants.

The data format produced by variant calling is the Variant Call Format (VCF). 
It is a standard format used to store the location and associated information 
of genomic variants. The data are stored in a human-readable manner. Typical 
uncompressed file sizes for VCF are 100 MB for WES and 400 MB for WGS. It can be 
efficiently indexed for fast search over the Internet. This means it can be stored 
on cloud storage such as S3 from AWS. Large VCF files can now be stored using 
dedicated cloud-based distributed databases, such as Hail.is, that allow storage in 
large data tables for fast column-wise and row-wise access and scalable analysis.76

4.5. Variant annotation
Following variant calling, annotation of variants using software such as the Variant 
Effect Predictor77 retrieves information about variants for external databases. 
This includes information about the frequency of the variant in the general 
population, the affected gene, and the predicted effect on the protein or on the 
gene expression. Annotation is crucial for developing clinical insights, and several 
large databases such as Clinvar/Clingen,78 dbSNP,79 and the Genome Aggregation 
Database (gnomAD)80 contain relevant annotations for thousands of previously 
discovered variants. Some of these datasets are available on Amazon S3, which 
means they can be efficiently shared.

Following variant annotation, files are in tabular format such as comma-sepa-
rated values (CSV) or tab-separated values (TSV). This is the best format for human 
viewing using Excel or for further analysis using the R programming language. 
These files can also be stored in databases for querying. Typical uncompressed 
file sizes for CSV files containing WES data are 200 MB and 2 GB for WGS. These 
tend to be larger than VCF files as they can contain extra information in the format 
of variant annotation (e.g., gene name, transcript consequence, allele frequency, 
pathogenicity prediction, etc.).

These can be loaded and queried using distributed cloud databases such as 
BigQuery from GCP81 or Athena from AWS, which allow for fast searching and 
filtering of variants using standard search queries at a much larger scale than can 
be achieved using local hardware.
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4.6. Variant interpretation and clinical reporting
Following variant annotation, as part of the reporting of results (section 2.2.3), the 
potential clinical relevance of variants is derived from its annotation as well as other 
sources of information such as the patient’s phenotype or family history discussed 
during the MDT meeting. The American College of Medical Genetics and Genomics 
and the Association for Molecular Pathology created a framework for variant clas-
sification to establish consistent standards and guidelines that can be applied to 
all variants in relation to Mendelian disorders.82 According to this framework, a 
variant can be classified into one of the following five categories: “Pathogenic”, 
“Likely Pathogenic”, “Uncertain Significance”, “Likely Benign”, and “Benign”. To 
classify a variant into one of these classes, 28 evidence criteria are defined, each 
of which supports either pathogenic or benign classification at various levels. The 
combination of the evidence criteria defines the variant’s final classification (Fig. 4). 

These 28 criteria span across different evidence types (e.g., reported evidence, 
population, and computational data), so that assessment of the potential patho-
genicity of a variant takes into account its frequency in the general population as 
well as the consensus of several computational tools. For example, if the allele 
frequency of a variant in gnomAD is high, it is likely too common to cause a rare 
disease. As a result, this observation of a high variant allele frequency will support 
the benign classification of the variant. If, on the other hand, the variant is absent or 
only present at extremely low frequency in a population database, then this finding 
will support the pathogenic classification of the variant. 

Variant classification is a crucial step during clinical genomics investigations 
because it reveals the variants which are likely to be responsible for the patient’s 
clinical presentation, and molecular diagnoses are crucial for targeted treatments.32 
However, this step may also reveal pathogenic variants not directly related to the 
current clinical presentation. Therefore, careful genetic counselling is required 
when reporting these incidental findings. Conversely, such incidental variants may 
be useful in the future as they may allow early screening and treatment of disease.

Since variant classification is heavily reliant on aggregating information from 
various sources, it would greatly benefit from application programming interface 
(API) connectivity. An API is a web-accessible link that developers can use in their 
code to connect to various databases, obtaining up-to-date information and 
allowing automatic collaboration between researchers across the world.83,84

4.7. Further analysis: statistics, machine learning, and artificial intelligence 
Along with the interpretation of individual variants for clinical reporting, large 
amounts of genomics data allow for statistical and machine learning approaches 
to variant interpretation. For example, genome-wide association studies (GWAS) 
compare genomics data from thousands of individuals, grouped as either cases or 
controls, in order to identify statistically significant variants that are more commonly 
present in cases than in controls.85 GWAS approaches work well for common variants 
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such as single nucleotide polymorphisms (SNPs) with a population frequency of at 
least 5%. Another related approach are gene-based burden tests, which follow the 
same principle but where the aggregate burden of variants per gene is compared 
between clinical cases and controls.86 Gene burden tests are more appropriate 
when working with rare variants with a population frequency of less than 5%. Public 
databases such as gnomAD can facilitate gene burden testing by providing an easily 
accessible set of controls.80,86

When applying statistical tests, nongenetic factors such as ancestry can skew 
the results due to genetic relatedness. This means that some genetic variants will 
appear more frequently because of shared ancestry rather than disease phenotype. 
Linear mixed effect models (LMMs) are statistical models that are commonly used to 
correct for these complicated hidden structures in GWAS studies by modelling the 
relatedness between individuals based on the genetic variants detected.87-90 Gene 
burden testing and LMMs have significant computational requirements that can be 
addressed with cloud infrastructure, as recently evidenced by the Azure FaST-LMM 
service.

Large GWAS have been applied to ophthalmology for glaucoma, diabetic 
retinopathy, keratoconus, and other conditions.91 Once a GWAS is complete, a 
number of SNPs are identified as being significantly associated with a disease. These 
can then be taken forward to build a polygenic risk score (PRS), which is a tailored 
measure of genetic risk for an individual to develop a condition such as glaucoma. 
The PRS is not currently used in clinical practice but may be a useful triage tool for 

Fig. 4. The process of variant classification. The American College of Medical Genetics (ACMG) 
and the Association of Molecular Pathologists (AMP) defined 28 evidence criteria to assess 
a variant located on a gene that has a definitive role in a Mendelian disease. Each of these 
criteria is assigned a criterion code that summarizes the type of impact and the level of 
strength attributed to the evidence criterion. The first letter in the code is either “P” which 
stands for pathogenic or “B” for benign, after which the abbreviation of the strength level 
is shown, where “P” stands for supporting, “M” for moderate, “S” for strong, “VS” for very 
strong, and “A” for standalone. The numbers after these letters refer to different criteria, they 
do not indicate any difference in strength within the same type and level of evidence group. 
After assessing a variant to each of these criteria, the criterion codes that are met by the 
variant are combined following a set of rules provided in the ACMG-AMP guidelines, resulting 
in a five-tier classification system of the following terms: “Pathogenic”, “Likely Pathogenic”, 
“Uncertain Significance”, “Likely Benign”, and “Benign”.
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prioritizing monitoring of high-risk patients in the future. GWAS are published in 
databases such as the NHGRI-EBI GWAS catalog,92 where the data are available for 
future reference.

Deep learning is also increasingly used to process large volumes of genomic data 
and generate new insights; this is thoroughly reviewed elsewhere.93,94 Genomic 
analytical tools using deep learning are often utilized to improve or complement 
the variant calling or subsequent analytical steps to correctly identify the variants’ 
clinical significance in relation to the observed disorder. An example is DeepVariant, 
which is used for the variant calling process. DeepVariant greatly decreases the 
systematic errors and biases that are frequent when using standard variant-calling 
tools.75

Deep learning is also used to decipher the connection between the observed pre-
sentation of a disorder in a patient and its genetic cause (phenotype-to-genotype 
mapping) by assessing the predicted results of the identified candidate pathogenic 
variants.95 Besides identifying the genetic cause of a disorder, another equally 
important aim in clinical genomics is being able to predict the risks of developing 
disorders later in the patient’s life (genotype-to-phenotype prediction). In most 
cases, alongside the inherited genetic features, there are several nongenetic 
risk factors such as environmental exposures and lifestyle choices that together 
determine the risks of developing diseases.96.97 In the future, genotype-to-pheno-
type predictions will most likely take into account genetic and nongenetic health 
data such as blood tests and imaging to reflect the complex interaction between 
risk factors. Machine learning methods are already being developed to integrate 
data from multi-omics studies, for example including genetics, proteomics, and 
metabolomics to discover new biomarkers for disease.98

Deep learning applications have traditionally been limited by hardware require-
ments. Modern deep learning is typically heavily dependent on graphics processing 
units (GPUs), which enable thousands of calculations to progress simultaneously at 
great speed. Specialized hardware such as Google’s tensor processing units (TPUs) 
are continually being developed to cater for the increasing technical demands of 
modern deep learning.99

5. The benefits and challenges of cloud for genomics

5.1. Benefits of cloud integration in genomics
There are clear benefits to how cloud integration accelerates genomics, as 
evidenced by success stories in the USA.

5.1.1. Success stories
The Broad Institute was launched in 2004 aiming to improve human health 
using insights from the Human Genome Project.100 This collaboration between 



Cloud-based genomics pipelines for ophthalmology 117

MIT, Harvard, and affiliated hospitals involves several disciplines, ranging from 
computer scientists to scientists and health care professionals. Broad Institute 
scientists have been advancing much further than the Human Genome Project, 
sequencing many genomes in-house to understand biological and pathological 
processes. Progress has increased dramatically over the last decade, with the 
rate of data generation doubling each year. The GCP partnership with the Broad 
Institute has allowed for significant improvements in their genomics pipelines. 
This has resulted in a 4-fold increase in the speed of processing and analyzing 
sequence data compared to when using in-house infrastructure. In addition, the 
cost of running a genome across the whole pipeline is estimated to be around 5 
USD,101 demonstrating that costs can be minimized with appropriate optimiza-
tions in the pipeline. The Broad Institute has made much of their data and analysis 
tools available for use worldwide through gnomAD80,102 and Hail,76 highlighting the 
collaborative power of cloud deployment. 

In the hospital setting, a cloud computing service provided by AWS has been 
used to develop highly predictive models on electronic health record (EHR) data 
in a secure manner.103 This is a strong proof-of-concept that this technology may 
enable both storage and analysis of EHR data, be integrated into the EHR itself, and 
deploy machine learning algorithms as decision support tools. Furthermore, in the 
biomedical setting, data backup performance is faster and more consistent when 
using cloud storage compared with the use of noncloud systems.104 This suggests 
that large amounts of sensitive data like genomic sequencing may be best handled 
using a cloud-based approach. To our knowledge, the Mayo Clinic is the only group 
of hospitals that is currently using a cloud-based genomics pipeline to contribute 
to patient care. Little information is publicly available, but it is clear that collabo-
ration with cloud providers is being used to deliver precision medicine in the form 
of recommendations based on genomic sequencing data.21,22 

5.1.2. Scalability and extensibility
Cloud provides a scalable and highly secure computing and storage system. 
Depending on the requirements, multiple analysis programs running in Docker 
containers on the Google Compute Engine or Amazon Elastic Compute Cloud (EC2) 
can be instantly launched to accelerate analysis (Table 1). Software tools such as 
DISSECT have been developed to take advantage of these computing clusters to 
accelerate genomics and epidemiology studies.105

Cloud-native platforms such as Terra, Illumina Basespace, and Lifebit allow 
biomedical researchers to conveniently build and run pipelines for processing 
genomic data without the need to set up and configure cloud infrastructure 
(Table 3). These platforms usually optimize resource management, thus reducing 
costs by, for example, making use of unused computing power (e.g., “spot-instanc-
es” on AWS). Cloud-native platforms make it easy for researchers without coding 
knowledge to run existing genomic pipelines and assemble their own through 
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a web interface. However, if more bespoke analysis is needed, pipelines can be 
assembled using specifically designed programming languages for building 
pipelines, such as SnakeMake,106 Nextflow,107 or CWL.108

5.1.3. Data sharing
Clinical genomics requires the storage, analysis, and sharing of large amounts 
of data. Productivity and collaboration between research institutions is greatly 
enhanced by tools such as gnomAD, which is a collection of > 125,000 exomes and 
15,708 genomes from human sequencing studies, publicly available and hosted 
by the Broad Institute in collaboration with GCP.80,102,109 GnomAD is invaluable 
for genomics research; this was illustrated elegantly when researchers used a 
genomics analysis pipeline running in GCP to analyze data within gnomAD, and 
discovered > 400,000 structural variants (rearrangements of large sections of 
DNA), many of which may be clinically relevant.110 Further to this, specialized 
websites and APIs can designed to allow researchers to query and visualize data 
collaboratively.111,112

5.1.4. Integration with medical imaging in ophthalmology
Ophthalmology relies heavily on visual pattern recognition from imaging data, 
and so it has been a prime target for the development of deep learning algorithms 
that readily automate and scale this process.61,113-116 The deployment of large-scale 
deep learning systems enables the transfer and storage of large amounts of 
information. As we have seen, cloud computing fits these requirements very 
well.117,118 Furthermore, imaging devices may be integrated into cloud-based 
systems to enable more efficient data upload and analysis, for example via GCP’s 
Cloud Healthcare API.119 In the future, these image analysis workflows could be 
easily integrated with genomics pipelines in the cloud, which is likely to improve 
clinical diagnostics and personalized care.120

Table 3. Examples of cloud-native platforms. These allow researchers to quickly build 
genomics pipelines without manual configuration of cloud infrastructure.

Platforms Cloud provider

Terra GCP

Illumina Basespace AWS

Lifebit AWS, GCP, or other private infrastructure 

Galaxy In-house clusters, German Network for Bioinformatics 
Infrastructure (de.NBI)

SevenBridges AWS, GCP, or other private infrastructure
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5.2. Challenges to implementing cloud computing in health care
As the significant benefits of cloud computing are increasingly apparent, this will 
stimulate further adoption. However, barriers to widespread adoption remain 
that need to be addressed.

5.2.1. Information governance
The biggest challenge to the widespread adoption of cloud computing in hospital 
settings is the balance of data availability with security and privacy.121 Data 
security refers to the protection of data from unauthorized access or manipula-
tion; this is achieved through technical tools like encryption and physical security 
of server hardware. For example, cloud providers such as GCP and AWS combine 
physical security of data centers and hardware redundancy to ensure security.122-

124 
Regulatory compliance is an important and expensive undertaking. In 

particular, ISO 127001, which is a security standard for computing infrastructure, 
is prohibitively expensive to achieve with one’s own data centers. Unlike most 
hospital systems, cloud providers such as AWS and GCP are already compliant with 
such regulations; therefore, using cloud services may help adopt new information 
technology at a fraction of the cost.

Data privacy refers to the limitation of data collection, storage, and usage to 
protect individuals. In the context of genomics, this refers to the prevention of 
misuse of genetic information to perpetuate social stigma or target marketing 
campaigns. One of the most notable legal instruments that exist to protect data 
privacy is the European Union’s General Data Protection Regulation (GDPR), 
which came into force in 2018.125 The GDPR aims to facilitate the flow of personal 
information and protect the fundamental rights of individuals to privacy. It 
stipulates that personal data should not be processed unless there is at least one 
legal basis to do so: if the data subject (e.g., the person who has their genome 
sequenced) has given consent, to fulfil a contractual obligation with the data 
subject, to comply with other legal obligations, to protect the vital interests of the 
data subject or other person, for the public interest, or for the legitimate interests 
of a third party. The principles are therefore vague and subject to some degree of 
freedom of interpretation.

Furthermore, the “right of erasure” is a key right that data subjects have. 
For example, a few years after having their genome sequenced, a person may 
wish to have their data deleted permanently; this must be fulfilled by the “data 
controller” (the person or company holding the information). This can cause 
significant technical problems due to the complexity of backups and may pose 
serious challenges when data has already been used (e.g., as part of a research 
paper).126 Cloud computing systems must fulfil these requirements, which could be 
challenging because the information is often stored in multiple physical locations. 
Hospitals that wish to implement cloud-based systems should therefore ensure 
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compliance with local and national laws in the design phase, so that legal require-
ments, such as erasure, may be easily fulfilled. Partnerships with cloud providers 
should also specify the geographic locations of servers to ensure transparency 
of data handling. Ultimately, clear communication and informed consent from 
patients are likely to be the most important legal instrument in enabling imple-
mentation of cloud-based clinical genomics; this could be delivered during 
genetic counselling appointments, for example.72 

Cloud platforms are designed so that users can access and control computing 
resources remotely, for example, via secure shell (SSH) or a browser window. 
Therefore, to protect data security and privacy, information must be protected 
from unauthorized access on the cloud server, the user’s device, and when in transit 
between the two. Security systems must be in place to reduce the risk of data 
breaches; the stakes are also very high because patients may be identified using 
their genetic information.72 Cloud providers typically implement systems such as 
encryption of data both at rest on hard drives and when in transit. Techniques such 
as federated learning enable analysis of data to occur on remote devices, therefore 
eliminating the need for data transfer in the first place.127 Data is usually decrypted 
to carry out mathematical operations during analysis. However, recent advances 
have shown that techniques such as homomorphic encryption may allow data to 
be analyzed in an encrypted state, thus protecting the information at all times.128 
Similar techniques are used by GCP in the form of Confidential Computing and 
Differential Privacy.129,130 During the implementation of such systems in hospitals, 
additional arrangements should be made to limit access to data by cloud service 
providers. In addition, one must consider measures to return or securely destroy 
information in the event of contracts ending or regulation breaches. The NHS 
has published guidance for the use of cloud computing services in healthcare, 
outlining these considerations and relevant local regulations.131

5.2.2. Cost
Another barrier to cloud adoption is cost; prices for complex combinations of cloud 
services are not always transparent or clearly explained. Cloud providers such as 
AWS and GCP usually have regions (e.g., eu-west1) and whilst data transfer within 
a region is free or cheap, data transfer between regions is expensive. Furthermore, 
certain types of subservices like AWS Marketplace which allow providers to license 
their products to AWS have a different billing system: hourly rates which can confuse 
end-users and lead to increased cost. Transparency and user satisfaction could be 
improved by offering live billing as a default rather than end-of-the-month bills, 
or the ability to set a maximum amount that a user is willing to spend per month 
for peace of mind. One existing solution that cloud providers offer to help better 
manage costs are reserved instances, which allow users to pay upfront for some 
infrastructure such as servers at a discounted rate. Another solution are better 
resource management tools that allow users to make use of unused resources, 

https://paperpile.com/c/LnTX1e/q4jvc
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such as “spot-instances”, on the condition that their jobs can be preempted at any 
time. Cheaper alternatives exist. A new storage service known as Wasabi offers 
long-term storage at a much-reduced rate.132 Mythic Beasts is a UK cloud provider 
offering cheaper access to computing power. Nonetheless, the daunting prospect 
of nontransparent costs remains one of the main barriers to widespread adoption. 
It is also often difficult to judge the likelihood of failure and subsequent data loss 
when using smaller cloud service providers.

Furthermore, during the research process pipelines may be run multiple times 
due to mistakes or experimentation. This affects students and experienced 
researchers alike. When running pipelines on local servers, only time is lost, but 
this may be expensive when run on the cloud. One possible solution may be to run 
experiments on local HPCs, but implement completed workflows on the cloud to 
leverage speed and ease of sharing data or analysis results.

6. The clinical need and the way forward

Cloud platforms enable health care organizations to integrate genomics into 
routine care whilst also facilitating research. 

6.1. The need for efficient querying and linkage to clinical data
In the UK, research hospitals such as Moorfields Eye Hospital NHS Foundation Trust 
have contributed largely to genome initiatives such as Genomics England, which 
now contains the genomes of over 100,000 individuals from the UK. However, this 
data is currently only accessible through the Genomics England embassy systems, 
a remote desktop application, and is not therefore integrated with the hospital’s 
clinical data. This means research staff and clinicians at the hospital cannot query 
the genomic data effectively. The lack of integration makes it challenging to make 
the most of this data, such as establishing gene-phenotype correlations, verifying 
clinical results in light of new data, and to conduct meaningful research into new 
genetic causes of disease. For patients, this can result in a lower diagnostic yield. 
For example, if a new gene is found to be associated with a retinal disease, then the 
clinical researchers may want to query all existing patients with a similar condition 
to see whether they have any variants in that gene.

6.2. Efficient reanalysis of data and development of tools for new insights
It is important to understand that our knowledge of the human genome and what 
constitutes genomic variation is continuously expanding. Therefore, there is always 
a need to revisit previous raw genomic data and reanalyze it in different ways. For 
example, there are several possible reference maps for the human genome and 
several types of analyses that can be done to discover new types of variation. To 
note one example, the previously described FASTQ and BAM files can be reanalyzed 
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at a later point to discover new types of genomic variation (e.g., structural rear-
rangements). In light of new information and new tools, it is therefore important 
for hospitals to be able to conduct their own research, which is pertinent to their 
needs, in the same way that is being achieved with image analysis. For example, if 
a substantial amount of the genomic analysis has been using an older version of 
the reference genome, clinical researchers may want to realign their data to the 
newest build. Another example may be a new tool to interpret noncoding variants 
or to more effectively identify structural variants that might explain the cause of 
the disease in a subset of individuals. Both these examples would be easily accom-
plished using cloud systems due to the flexibility of storage options and scalable 
computing power that may be organized into pipelines.

6.3. Triage and surveillance
A future application of genomics in the health care setting is triaging and surveillance 
of common treatable conditions via genetic risk profiling. PRS, which are derived 
from GWAS, can estimate an individual’s life-long risk for age-related macular 
degeneration, glaucoma, or diabetic retinopathy. Although they are currently used 
only in research settings, they may be adopted into clinical practice in the future. 
As PRS will also likely need updating in light of new discoveries, reanalysis from 
raw data will likely be necessary. Hospitals running cloud-based EHRs would be 
perfectly primed for this, since detailed clinical data would be easily accessible.

Genetic testing can also be useful to study the genetic basis of drug response, 
known as “pharmacogenomics”,133-135 which is important to avoid adverse drug 
reactions and maximize efficacy when planning management. For example, 
anti-vascular endothelial growth factor (anti-VEGF) injections are the mainstay 
treatment for exudative age-related macular degeneration; some genotypes show 
increased response to this treatment, whereas some show a reduced efficacy.136 
Genetic variation in the VEGF signaling pathway may also explain variations in 
response to treatment of proliferative diabetic retinopathy.137 In the future, this 
may be useful for tailoring pharmacological treatments based on genomic data.

6.4. Ethics and regulation
With these new exciting applications of genomics in healthcare, careful ethical 
and regulatory oversight are needed, since large amounts of clinical data are being 
used for research.138 The increased accessibility of clinical data for research poses 
important questions for consent. The UK Biobank recruited a large cohort of approx-
imately 500,000 people between 2006 and 2010 for a prospective study examining 
the lifestyle, genomic, and environmental determinants of serious illnesses. Data 
was released in 2012; since then, it has become a major open-access resource for 
researchers.139 The UK Biobank has also adapted research consent ethics for the 
genomic era;140 for example, the participants consented for their data to be used for 
third-party research projects generally, but consent was not obtained for specific 
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uses of their data. 139 This allowed maximum flexibility for third parties (industry or 
academia) to use this data for research purposes. This precedent could be applied 
in future to health care data shared on the cloud, thus facilitating the integration of 
clinical care with research.

When using clinical data, incidental findings could be made, particularly when 
analyzing a whole genome. The question of what to do with these findings has 
been a controversial topic in genomics for a long time.141,142 The American College 
of Medical Genetics and Genomics recommended in 2013 that clinical genomics 
tests should not only test for genes of interest, but also conduct a search for a 
set of variants deemed to be of medical value, with no option for the patient to 
decline unwanted information; this was widely seen as unethical due to the 
disregard for patient autonomy.60,143,144 However, due to the huge positive clinical 
impact genomics could have, others have advocated for a balanced approach by 
regulators, arguing that the use of genomic data for research should be permitted 
without explicit consent, provided that mechanisms protecting data security and 
privacy are put in place.145

These issues will be compounded upon the introduction of cloud computing for 
genomics pipelines because it will greatly enhance the accessibility of genetic data. 
Moving forwards, it will be crucial that the delicate balance between patient privacy 
and data accessibility for research is negotiated with care, involving discussions 
with patients, clinicians, researchers, and cloud service providers.

6.5. A vision of a future cloud-based clinical genomics pipeline
Initiatives for making genomic data available to the research community have 
been driven by projects such as the Personal Genome Project. For example, the 
Personal Genome Project UK provides genomics data (microarray, WGS, and WES) 
but also transcriptomics and methylation data.146.147 All this data is under a Creative 
Commons license that places them in the public domain, allowing them to be 
downloaded without any registration, and as such has been integrated into cloud 
providers and genomic web platforms (Table 3). These open datasets can be a first 
step towards prototyping cloud-based clinical genomics pipelines.

For the UK, large amounts of genomics data currently from NHS patients resides 
in the Genomics England embassy and other genomic studies. Bringing this data 
back into a health care setting via cloud-enabled hospitals would allow for linkage 
to detailed clinical data and leveraging genomics for clinical use.

To illustrate how a clinical genomics pipeline might operate in a hospital 
setting, we now consider a hypothetical patient who presents to an eye hospital in 
2030 with a common eye problem (Fig. 5). Mrs. XX is referred to her local hospital 
due to impaired vision. Her ophthalmologist takes a full history and carries out 
a thorough examination, and specialist ophthalmic nurses perform automated 
perimetry, OCT, and retinal fundus imaging. From this clinical evaluation, Mrs. 
XX is diagnosed with a rare form of primary open-angle glaucoma, which was a 
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cause of irreversible vision loss back in 2021. However, effective treatments are 
now available for some genetic forms of open-angle glaucoma. The ophthalmolo-
gist carefully explains the value of genetic testing to Mrs. XX whilst checking that 
she understands fully and provides written information. The discussion covers 
therapeutic options, including gene therapy and drug combinations, which may 
be tailored to suit the genetic variants present in Mrs. XX’s genome. Mrs. XX is also 
reassured that many technical and regulatory measures are in place to protect the 
security of her genetic data as well as her privacy and that of her family members. 
Family planning is also discussed, since the results may affect her decision to 
have children, and Mrs. XX understands that her data may be used for research 
purposes. Mrs. XX then decides to go ahead with a blood test for genetic testing, 
although she had the option for further appointments with a genetic counsellor 
to go into more details of the implications of genetic testing. Specifically, Mrs. XX 
consents to the use of her genetic information to guide her management plan, and 
to contribute to research in a secure manner that ensures that she is not identifi-
able. She also specifies that her data should be permanently erased after 5 years 
if her disease progression has halted.

The blood samples are collected in the clinic and sent to a dedicated laboratory 
where the genetic material is extracted and undergoes NGS. The raw data is 
uploaded onto a cloud platform integrated with the hospital’s EHR, where it 
automatically undergoes bioinformatic analysis designed by the hospital clinical 
genetics team, and a preliminary report is generated. The process of analyzing 
the genomic data in the cloud platform costs the health system approximately 
5 USD, similar to many other blood tests. The hospital team receives this report 
immediately via the EHR, and a multidisciplinary meeting comes to an agreement 
that Mrs. XX has genetic variants in lipid metabolism genes that may be targeted 
to treat her glaucoma,148 so funding is put into place for gene therapy. Mrs. XX is 
booked in for an appointment a week after her first visit, and these findings are 
discussed with her. After extensive genetic counselling, she then consents to gene 
therapy, thus halting her disease progression and saving her sight from further 
deterioration. Authorized research groups are able to access the genetic data via 
the cloud and use homomorphic encryption to analyze the data securely, whilst 
discovering new insights about the pathogenesis of glaucoma which guide future 
research into potential therapies.

7. Conclusions and future directions

Genomics is already revolutionizing diagnosis and targeted management in 
clinical practice whilst also becoming exponentially cheaper. The Human Genome 
Project,6,149,150 an international venture with a total cost of 3 billion USD, reached 
the goal of sequencing the euchromatic regions of the genome (92.2% of the total 
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genome with a 99% accuracy) from a small group of human donors. Current costs 
of genome sequencing fell well below Moore’s Law,151,152 such that the price of a 
complete WES is currently below the 1000 USD barrier.152 Indeed, in a staggering 
feat of optimization, GCP and The Broad Institute have reduced the cost of 
sequencing and running the GATK Best Practices pipeline to roughly 5 USD per 
genome.101

Cloud-based systems have many features that may facilitate the clinical 
application of genomics studies. The on-demand, scalable nature of cloud services 
is especially useful when managing the large amounts of data involved in genomic 
experiments. This may also be a more economical option than continually 
maintaining local services that may not be in use at all times, particularly if data is 
generated or analyzed in a batch manner. The cloud could enable hospitals with 
strained budgets to minimize their need for maintaining physical infrastructure, 
security, or recovery of hardware. Cloud technology also offers wide access to 
stored data, and this could greatly facilitate analysis and interpretation, which 
is a highly multidisciplinary clinical pathway. In addition, the benefits extend to 
research, since more data could be made available to research groups that may 
use “data-hungry” analytic techniques, and the insights generated may give 
feedback to improve clinical practice.

Cloud computing is perfectly primed to facilitate the widespread adoption of 
genomic analysis in clinical practice. Under this model, data storage and com-
putational power are much more scalable and cost-effective for hospitals than 
local computing solutions, which require significant maintenance and down-time. 
In addition, collaboration between institutions such as hospitals, sequencing 
companies, and research groups is easily achieved on cloud platforms, eliminating 
the need for complex data transfer arrangements. Such systems may be readily 
incorporated into EHRs, thus greatly improving the accuracy and speed of patient 
care. This collaborative environment may also allow all health care professionals 
to have access to the most up-to-date information about any pathological genetic 
findings, irrespective of their location. Hence, all patients may have the same 
amount and quality of information in their genomic reports, regardless of whether 
they are in a specialist hospital or not, or whether they are in a developed country 
or not. With the combination of technological advancement and falling costs, 
cloud-based clinical genomics will soon become routinely used beyond suspected 
genetic or hereditary conditions.
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Appendix
Table S1. Human Phenotype Ontology (HPO) associations for Bardet-Biedl syndrome 
(https://hpo.jax.org/app/browse/disease/ORPHA:110). Over 13,000 clinical phenotypes 
(e.g., hypertension, hearing impairment) are described in the database, each with a unique 
identifier grouped by categories representing body systems. When searching by diseases, a 
brief description of the disease, its identifier, and genetic associations with the correspond-
ing identifier are also shown.

HPO_TERM_ID HPO_TERM_NAME CATEGORY

HP:0000822 Hypertension Cardiovascular

HP:0001395 Hepatic fibrosis Digestive System

HP:0000365 Hearing impairment Ear

HP:0000368 Low-set, posteriorly rotated ears Ear

HP:0000135 Hypogonadism Endocrine

HP:0000639 Nystagmus Eye

HP:0000512 Abnormal electroretinogram Eye

HP:0000580 Pigmentary retinopathy Eye

HP:0008736 Hypoplasia of penis Genitourinary system

HP:0008724 Hypoplasia of the ovary Genitourinary system

HP:0000028 Cryptorchidism Genitourinary system

HP:0000003 Multicystic kidney dysplasia Genitourinary system

HP:0000100 Nephrotic syndrome Genitourinary system

HP:0004322 Short stature Growth

HP:0001513 Obesity Growth

HP:0000494 Downslanted palpebral fissures Head and neck

HP:0000470 Short neck Head and neck

HP:0000426 Prominent nasal bridge Head and neck

HP:0001162 Postaxial hand polydactyly Limbs

HP:0006101 Finger syndactyly Limbs

https://hpo.jax.org/app/browse/disease/ORPHA:110
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HPO_TERM_ID HPO_TERM_NAME CATEGORY

HP:0003202 Skeletal muscle atrophy Musculature

HP:0001249 Intellectual disability Nervous System

HP:0002167 Neurological speech impairment Nervous System

HP:0002230 Generalized hirsutism Skin, Hair, and Nails

HP:0010747 Medial flaring of the eyebrow Skin, Hair, and Nails
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Table S2. Human Phenotype Ontology gene associations for Bardet-Biedl Syndrome. Genes 
associated with the syndrome are listed with identification numbers and symbols.

GENE_ENTREZ_ID GENE_SYMBOL

79738 BBS10

55212 BBS7

123016 TTC8

157657 C8orf37

129880 BBS5

583 BBS2

22954 TRIM32

80184 CEP290

11020 IFT27

585 BBS4

54585 LZTFL1

51057 WDPCP

4867 NPHP1

166379 BBS12

8195 MKKS

84100 ARL6

92482 BBIP1

27241 BBS9

54903 MKS1

26160 IFT172

10806 SDCCAG8

582 BBS1




