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Abstract

Purpose: Fluorescence imaging is a valuable tool for studying tear film dynamics and
corneal staining. Automating the quantification of fluorescence images is a challeng-
ing necessary step for making connections to mathematical models. A significant part
of the challenge is identifying the region of interest, specifically the cornea, for col-
lected data with widely varying characteristics.
Methods: The gradient of pixel intensity at the cornea–sclera limbus is used as the ob-
jective of standard optimization to find a circle that best represents the cornea. Re-
sults of the optimization in one image are used as initial conditions in the next image
of a sequence. Additional initial conditions are chosen heuristically. The algorithm is
coded in open-source so�ware.
Results: The algorithm was first applied to 514 videos of 26 normal subjects, for a to-
tal of over 87,000 images. Only in 12 of the videos does the standard deviation in the
detected corneal radius exceed 1% of the image height, and only 3 exceed 2%. The
algorithm was applied to a sample of images from a second study with 142 dry-eye
subjects. Significant staining was present in a substantial number of these images.
Visual inspection and statistical analysis show good results for both normal and dry-
eye images.
Conclusion: The new algorithm is highly e�ective over a wide range of tear film and
corneal staining images collected at di�erent times and locations.
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1. Introduction

Dry eye disease (DED) is a condition a�ecting the ocular surface characterized by a
loss of homeostasis of the tear film (TF). An unstable TF leads to regions of tear thin-
ning and inadequate lubrication the ocular surface, which can result in inflammation
and ocular surface damage.1 Clinical assessment of the unstable TF involves timing
the appearance of dark spots, termed tear breakup (TBU), following instillation of
sodium fluorescein dye into the eye.2,3 Fluorescein dye is also used to assess the ex-
tent of corneal damage or stained cells using grading scales.4–7

Both the assessment of corneal staining and TF instability tests begin with the in-
stillation of fluorescein dye, and both involve subjective clinical judgments. The TF
stability test times the appearance of a dark spot of TBU in the fluorescent TF, but
the judgment of “darkness” is undefined and may vary widely among clinicians.8 In
addition, timing is the only measure; the formation and rate of development of sub-
sequent TBU is not included in the measurement.9 Similarly, the severity of corneal
damage, which is judged by fluorescein staining, is typically graded based on the ex-
tent of the corneal staining, using rather coarse scales ranging from Grade 0 (no stain-
ing) to Grades 3, 4, or 5 (severe staining, depending on the scale).4–7 The subjective
nature of these clinical tests has led to several attempts to automate the processes to
improve the accuracy of both the fluorescein TBU time and corneal staining tests.10–16

For this reason, we seek a method to automatically detect and dynamically measure
areas of TBU and corneal staining from photographs or videos captured by the slit
lamp biomicroscope, thus requiring only standard clinical equipment to capture TF
images.

A major step toward automatic detection of TBU or corneal staining is a reliable
means of locating the cornea in each image, allowing us to exclude irrelevant re-
gions. Some of the challenges that need to be overcome for successful cornea de-
tection include o�-center position within the image frame, motion and blurring dur-
ing video capture, occlusion by eyelids and eyelashes that changes during partial and
full blinks, variation in total illumination from one trial to another, visible physiolog-
ical detail within a light-colored iris, changes in pupil size, and edges and structures
interior to the image over the cornea.

Prior work in this vein (as described in a recent survey17) includes Ramos et al.18,19,
who used Canny edge detection followed by maximizing correlation of the relevant
edges with a predetermined set of circular and elliptical templates. Some of the de-
tails (e.g., Canny parameters, number of templates) were not specified. Furthermore
the work was based on just 18 videos, and the published images show relatively fa-
vorable circumstances for cornea detection. Remeseiro et al.20 faced a similar task for
44 lipid interferometry images. Their method first identified the pupil through cross-
correlation of a thresholded image with circular templates, then found a concentri-
cally located region of interest based on an empirical lower threshold for pixel lumi-
nosities. Chun et al.14 applied automated processing to detect staining; for cornea
detection they refer to a method of Daugman21 that has similarities to ours. Su et
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al.22 trained a deep convolutional neural network to identify small square patches
within an image as belonging to eyelids, eyelashes, sclera, or cornea, in the last case
further distinguishing between TBU and non-TBU patches.

In this work we describe a new computational procedure for predicting the cornea
location. It relies on gradients in image intensity at the cornea–sclera limbus with-
out imposing further edge detection heuristics, and it uses continuous optimization
rather than statistical correlations with a predetermined set of boundary templates.
It has been applied to a data set consisting of more than 87,000 images within 514
videos, taken of 26 normal subjects, and to DED corneal staining images from a study
with 142 subjects, some with severe staining. In both cases, the method showed good
performance under all of the challenging conditions described above. Furthermore,
our implementation of the method is available as open-source code.23

2. Methods

We use two data sets in this study. The first, as described in Awisi-Gyau et al.24, was
from a study of TBU and the ocular surface sensory response to tear breakup that
included 26 normal subjects. The second study included 142 DED subjects and was
designed to develop a novel method for grading corneal staining.25 Both studies re-
ceived approval from the Biomedical Institutional Review Board of Indiana University.
Declaration of Helsinki principles were followed during data collection and informed
consent was obtained from subjects.

In the first study, subjects were seated behind a slit lamp biomicroscope. Two
microliters of 2% fluorescein dye was instilled into the eye with a micropipette and
subjects were asked to keep the tested eye open as long as possible. Images of the TF
were recorded at 16x magnification with a cobalt blue filter over the illumination sys-
tem and a Wratten #12 filter over the observation port of the slit lamp biomicroscope.
This lighting system causes the aqueous layer of the TF and any corneal staining to
fluoresce green. Videos were captured variously at 4 or 5 frames per second, depend-
ing on the subject, with the goal of filming a single interblink period.

We refer to a trial in this data set as a sequence of consecutively captured images
of the subject’s eye. These images have resolution 2824 × 4240. In order to speed
up subsequent input and processing, each image was first reduced by 50% in each
dimension using ImageMagick version 7.0.10-22 with standard -resize option, re-
sulting in resolution 1412× 2120.

In the second study on corneal staining, 5 microliters of fluorescein dye was in-
stilled into the tested eye and single photographs of corneal staining were taken us-
ing the same equipment setup as in the first study. Photographs were taken every 30
seconds for a period of 5 minutes or until the fluorescein dye was visibly washed out.
The same procedure was repeated for the le� eye.

Each video frame or photograph is an image with red, green, and blue channel
intensities, which we represent as the arrays R, G, and B. Each is m × n, with m
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and n being the number of rows and columns, respectively. The individual intensity
values in each channel are normalized to be real numbers between 0 (no intensity)
and 1 (full intensity).

For detection we model the cornea as a circle, leaving us to determine its center
(ic, jc) and radius rc in each video frame. We allow these to be real values rather than
restricting them to integers. A circle is a more restricted model than, say, an ellipse.
Estimates of mean vertical and horizontal diameters of the cornea include 10.6 mm
and 11.7 mm, respectively,26 and 10.63 mm and 11.46 mm, respectively,27 suggesting
a di�erence of 10% or less between these measurements. We judge this to be of little
concern for our purposes, and the use of a circle may be more robust in the presence
of bright staining near the limbus that an ellipse may exclude more readily.

The feature we seek to exploit is the sharp increase in fluorescent intensity at the
cornea–sclera limbus, as measured by a gradient in the outward radial direction. Max-
imization of the total gradient is the criterion used to select the center and radius of
the model circle.

2.1 Purkinje image detection

The Purkinje image (i.e., the catoptric image of the illuminating source) serves as a
landmark for initializing the optimization procedure described in section 2.3. It also
is a small region of sharp intensity gradient that can interfere with the optimization,
so it is preferable to detect and screen it out first.

In the first data set, the Purkinje image is distinguished in virtually all of the images
by having a relatively strong pixel intensity in each of the red, green, and blue color
channels. For these images we use the blue channel to detect the Purkinje image. In
second data set, which features little content in the red and blue channels, we use the
green channel. For what follows we use X to denote the array of intensity values in
the selected channel.

In many, but not all, of our data images, the Purkinje image is at or near the maxi-
mum intensity of 1. We therefore use an adjustable threshold value τ that determines
the minimum intensity for the core of the Purkinje image. Starting with τ = 0.95, the
algorithm finds the rectangle of maximum area whereX exceeds τ . If the area is too
small, then τ is lowered by 0.05, because there aren’t any clusters of su�iciently bright
pixels, and the largest rectangle is found at the new threshold. Otherwise, the candi-
date rectangle must pass two tests. First, its height must exceed 80% of its width, in or-
der to eliminate horizontally oriented bright lines at the eyelids. Second, the average
pixel value inside the rectangle must exceed the value in a larger region surrounding
it, in order to filter out the sclera. If these criteria are not met, the rectangular region
is excluded from consideration and a new largest rectangle is found.

Finding a rectangle inscribed inside the Purkinje image is su�icient for estimating
the cornea location as described in section 5. It can also be used to seed a growth
algorithm to select adjacent similar pixels. Prior to detection, we enlarge the resulting
region and set the green intensity value to the median of an enclosing box, in order
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Fig. 1. Diagram showing a circle superimposed on a fluorescence image. The circle is deter-
mined by its center and radius. In order to reduce interference from eyelids and eyelashes, only
the arcs shown are used to calculate the intensity gradient that will be maximized, as indicated
by Equation 1.

to mask the intensity gradient from the optimization process.

2.2 Intensity gradient

For any proposed cornea center (ic, jc) and radius rc, we compute the outward radial
gradient of intensity by finite di�erences at selected angles θk lying one degree apart.
Because the eyelids may obscure parts of the cornea’s edge and also have bright lines
that confuse the gradient, we select only θk such that:

π

4 ≤ |θk| ≤
3π
4 , (1)

as measured counterclockwise from the downward direction (the direction of in-
creasing row index). See Figure 1 for a diagram of the relevant angles.

Since the fluorescence is almost entirely green, we use only the G channel. To
mitigate noise, we first apply to G a Gaussian filter of standard deviation m/80 in
all directions. The blurred pixel values can then be interpolated linearly to o�-grid
values, defining the intensity function z(i, j). We shi� to polar coordinates relative to
the proposed cornea center via:

z̃(r, θ) = z
(
ic + r cos(θ), jc + r sin(θ)

)
. (2)

Finally, the radial gradient at angle θk is approximated by:

g(θk) = z̃(rc + 2, θk)− z̃(rc − 2, θk). (3)
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2.3 Optimization and serial processing

With the preprocessing and definitions described above, the objective of the opti-
mization step is to maximize over ic, jc, rc the value of:∑

k

g(θk), (4)

with the gradient values g(θk) defined in Equation 3 and the sum taken over all in-
cluded angles θk. We also added logarithmic barrier functions with to enforce the
restrictions 1 ≤ ic ≤ m, 1 ≤ jc ≤ m, and 0.25m ≤ rc ≤ 0.6m in unconstrained
methods, although one could alternatively use box constraints in a constrained opti-
mization method.

The optimization step runs very quickly compared to other operations in the
processing chain, so we apply both a trust-region quasi-Newton method and the
Nelder–Mead method to each of several initial conditions, retaining the best result
from among all cases. The initial conditions selected are the optimal state found
in the preceding video frame (if any); the generic values ic = m/2, jc = n/2,
rc = m/2.7; and the heuristic values obtained by the algorithm described in the
Appendix.

3. Results

The algorithms described in section 2 were implemented in Julia 1.5 as open-source
so�ware23 and run in Ubuntu 18.04.5. Apart from file loading times, each image took
around a second to process.

3.1 Analysis of TBU images

Figure 2 shows the results of the cornea detection on individual images taken from
videos of nine di�erent subjects. As shown in Table 1, these images exemplify a va-
riety of challenging conditions for detection. Partial occlusion by the eyelids occurs
in most of the collected images, and eyelashes o�en significantly cover the superior
cornea, as exemplified in Figure 2b, d–g. Corneal staining appears as light colored
dots or areas, as seen in Figure 2b, c, i. Structures in a light-colored iris create a pat-
tern of light and dark features beneath the cornea (examples in Fig. 2c, i) that are
not seen in images of dark-colored irises. These features can create false negatives
for standard edge detection methods. Reflex tearing, as in Figure 2a, can also create
spurious edges in the image. Many images are captured before the slit lamp is turned
on (example in Fig. 2h) or do not show much of the limbus simultaneously on both le�
and right sides of the cornea (examples in Fig. 2e, g). Finally, the detection method
does not rely on preprocessing, registration, or stabilization in order to a priori con-
strain the cornea near the center of the image, as demonstrated in Figure 2b, d–g.
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Fig. 2. Results of cornea detection on video frames from nine di�erent subjects. The detected
cornea region is shown in each case by a magenta circle. See text and Table 1 for a description
of features in individual images.

Table 1. Challenging features of the images in Figure 2
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Occlusion by eyelid X X X X X X X
Corneal staining X X X
Eyelashes X X X X X
Light-colored iris X X
Reflex tearing X
Poor illumination X X X
O�-center location X X X X X
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Figure 3 shows time traces of the detected cornea center and radius for 12 trials
taken from four subjects. The cornea center (ic, jc) and radius rc are normalized by
the height of the image (m = 1412 pixels), and the traces show the di�erences be-
tween these normalized values over time and their median values over the entire trial.
Many videos in the set begin before the slit lamp biomicroscope is turned on and/or
end with one or more blinks. These periods cause the large jumps in the time traces
seen near either end of some of the time series in Figure 3, and they are not of interest.

Figure 4 shows an assessment over the entire data set of the consistency of the
cornea detection algorithm via the variability in the detected radius rc. Out of 514
videos, only 12 cases (2.3%) show a standard deviation greater than 1% of the image
height, and just 3 are above 2%. These small values, combined with visual spot checks
of the results, give us high confidence in nearly all of the detection results. Typically,
the failure mode in the worst cases involves a side of the limbus moving out of the
illuminated area or being obscured due to high exposure that reduces contrast.

In Figure 5 and Figure 6 we show the processed images comprising the shaded
regions A and B of Figure 3. In the interblink period, the paths of ic and jc should in-
dicate unsteadiness, dri�, and occasional rapid movement in the position of the eye
within the image frame. In Figure 5, for example, we can see considerable motion blur
corresponding to rapid movement of the cornea relative to the frame rate of the cam-
era. This movement is reflected in a sudden increase of the red curve and decrease
of the blue curve in region A of Figure 3.

Changes in the detected radius rc may result from physical changes in the cornea–
camera distance, but we expect and observe these motions to be smaller than the
transverse ones. These changes may also be nonphysical artifacts of the detection
process, as illustrated in Figure 6. During frames (Fig. 6d–f) of this time series, the up-
per eyelid occludes a slightly larger portion of the cornea than just before. Combined
with the lack of visible limbus on the le� side of the cornea due to poor illumination,
this causes a small temporary increase in the detected cornea radius, although the
detected portion over the cornea looks passable throughout the series.

3.2 Analysis of corneal staining images

In Figure 7 we see that the results of applying the algorithm to detection of the cornea
in images taken from subjects with DED. Some of these images bring challenges be-
yond the images of normal subjects. DED subjects may have greater di�iculty keeping
their eyelids wide open for an extended period of time, leading to greater occlusion of
the cornea. Some show extensive staining with significant coalescence and intensity.
Examples in Fig 7a, b, e, h show areas of coalesced staining, which can hinder corneal
detection because the stained areas are di�icult to distinguish from the conjunctiva.
Fainter, lesser amounts of corneal staining appear to have less e�ect. In addition,
most of the issues in Table 1 also a�ect images of corneal staining. Nonetheless, the
algorithm performs excellently on all of them.
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Fig. 3. Detected center and radius of the cornea over time. For each trial, the cornea center
(ic, jc) and radius rc are normalized by the height of the image (m = 1412 pixels), and the
di�erence between the each value and its median over the trial is plotted (blue, red, and green
for ic, jc, and rc, respectively). The labels A and B refer to image sets in subsequent figures.
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Fig. 4. Standard deviation of rc over the course of each video during the interblink period of
interest. Results are grouped by subject; most subjects have 20 values reported.

Fig. 5. Set of images from a trial for subject 5. The period marked as shaded region A in Figure
3 consists of the nine consecutive processed images shown here. The detected cornea for each
image is shown by a magenta circle. The cornea is tracked accurately while moving upward
and to the right; note the motion blur in (b), (c), and (f).



Automatic cornea detection 65

Fig. 6. Set of images from a trial for subject 2. The period marked as shaded region B in Figure 3
consists of the consecutive processed images shown here. The detected cornea is shown by a
magenta circle. Subtle changes in the upper eyelid occlusion caused a temporary nonphysical
change to the detected radius in (e–h).
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Fig. 7. Sample cornea detection in images of the tear film in nine di�erent eyes with DED. Cases
(a), (b), (e), and (h) exhibit extensive staining, and cases (a), (b), and (d–f) have high levels of
eyelid occlusion.

4. Discussion

The methods described in this study successfully detected the cornea from both
videos of fluorescein TBU and corneal staining in DED subjects. Thus, this method
can be used for the first step of automating either clinical test, which provides needed
objectivity to these highly subjective tests.

We believe that these are the first published results demonstrating a high degree
of e�ectiveness at cornea detection over a wide range of patients, including DED pa-
tients, and a large data set. The robust and consistent performance in the presence
of challenging factors such as eyelid occlusion, extensive corneal staining, eyelashes,
light-colored iris, reflex tearing, inconsistent illumination, and rapid movement is crit-
ical to future applications in clinical settings, particularly for patients with DED.

A critical component of the success of the so�ware is to search for the limbus over
only part of a proposal circle, rather than the entire circle. This minimizes interference
from the upper and lower eyelids. Our inspections of the results confirm that the re-
striction to circular models over more general shapes is justified.

5. Conclusions and future perspectives

We have created free and open-source so�ware implementing new algorithms for
detecting the cornea within video captures of fluorescent TF and images of corneal
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staining. The method is robust over a wide range of challenging circumstances ob-
served in the course of 514 videos of 26 normal subjects, comprising about 5 total
hours of video footage. Corneal staining images add challenges on top of those for
the TF. Our method was demonstrated to be highly successful through visual inspec-
tions and statistical analysis.

Future work could use reliable detection of the cornea as a first step in, for in-
stance, automated image segmentation or machine learning assessments of TBU, or
for automated graded of staining severity. Another direction would be to try ellipses
instead of circles as the cornea model, increasing the number of free parameters from
three to five (adding orientation and eccentricity, for example). The availability of the
code allows further applications to data sets generated by clinicians for normal and
DED patients.
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Appendix

Heuristic initial condition for optimization

In addition to using generic values and the results of the preceding frame to initialize
the cornea parameters ic, jc, and rc, a heuristic method is applied to find two other
initializations that are attempted by the optimization method. This process begins
by finding the location of a rectangle inscribed in the Purkinje image as described in
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section 2.1. The vertical midpoint of this rectangle is used for ic in both of the initial-
izations described here.

Two choices are found for the other cornea circle parameters. In most frames
there is a substantial amount of bright sclera to the le� and right of the cornea. We
want to use the edges of the sclera to initialize jc. We begin by selecting all pixels (i, j)
such that Gij > 0.5 maxi,j Gij , excluding those previously identified as belonging
to the Purkinje image. Our method will be to locate the le� and right peaks of the
distribution of the column indices of these pixels. We represent this distribution by
binning them into 100 bins between 1 and n. Let jL be the center of the bin with the
most hits for indices less than n/2 (i.e., in the le� half of the image), and similarly let
jR be the center of the bin with the most hits for indices greater than n/2. Then our
first estimates of jc and rc are:

jc = jR + jL

2 , rc = jR − jL

2 . (5)

Some images do not include much if any of the sclera to one side of the cornea,
making jL or jR unreliable or unfeasible to obtain. Our other initialization is meant to
help with these situations. We describe it here when jR is known, but the other case
is similar. We give a parameter−1 < γ < 1 that describes the approximate expected
position of the Purkinje image relative to the corneal center and normalized by the
corneal radius. Let jM be the median value of the column indices for the Purkinje
image. Then the geometry implies:

r̃c = jR − jM

1− γ , j̃c = jR − r̃c (6)

for the second initialization.
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