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Abstract

Purpose: The purpose of the present study was to quantify test-retest reproducibili-
ty of measurements of stiff ness of the human trabecular meshwork (HTM) by atomic 

Correspondence: Larry Kagemann, Ph.D., RAC, FARVO, US Food and Drug Administra-
tion, White Oak Building 66, Room 1252, 10903 New Hampshire Avenue, Silver Spring, MD 
20993-0002, USA.
E-mail: Lawrence.Kagemann@fda.hhs.gov



Reproducibility of TM AFM 35

force microscopy (AFM). 
Methods: Eleven 40 μm radial limbal cryostat sections from a fresh human donor 
rim were mounted on charged slides and rehydrated at room temperature. Stiffness 
at four TM locations (anterior to posterior along Schlemm’s canal) was measured 
by AFM. At each location, a 6 x 6 grid was sampled. Indentation points were evenly 
distributed over a 20 μm x 20 μm area, with a rate of one load/unload cycle per 
second. Measurements were then repeated for calculation of test-retest variability. 
Results: The test-retest coefficients of variation for the four measurement locations 
(anterior to posterior) were 24.39, 25.28, 12.74, and 14.26%, respectively, with a 
notable drop in the two posterior locations compared to the anterior. The test-retest 
coefficient for the sections was 19.17%. For the entire eye, the test-retest coefficient 
of variation for the measurement of the TM stiffness was 17.13%. Young’s moduli 
consistently decreased from anterior to posterior location. 
Conclusions: Wide regional variation suggests that single value does little to fully 
describe the complex array of TM stiffness levels within the eye, and future studies 
of TM stiffness assessed by AFM should include multiple tissue samples from each 
eye, with documentation of the anterior-posterior location of each measurement.

1. Introduction

Elevated intraocular pressure (IOP) is the single most important risk factor in the 
diagnosis1-3 and progression4,5 of glaucoma, and its reduction is the single clinical 
endpoint of treatment.6 Overby et al. recently demonstrated that gene expression 
in glaucoma is altered, resulting in elevated stiffening of the inner wall of Schlemm’s 
canal, impeding formation of pores, leading to IOP elevation in glaucomatous eyes. 
To that end, there is increasing interest in the measurement of the stiffness of tissues 
in the proximal aqueous humor outflow pathway, including Schlemm’s canal and 
the trabecular meshwork (TM).7-13

A study by Last et al. suggests that TM stiffness is increased in glaucoma.7 In 
that study, stiffness (Young’s modulus, E) as measured by atomic force microscopy 
(AFM) was found to vary by two orders of magnitude within individuals, and amongst 
subjects. AFM measurements of rat TM found that mean local stiffness changes by 
more than twenty-fold within individual eyes.11 

We have successfully used AFM to quantify the stiffness of the basement 
membrane of the eye, but have not yet applied it to assess the measurement of TM 
stiffness.14,15 AFM is known to be a noisy measurement,16-22 although the test-retest 
reproducibility, i.e. the variation associated with repeated measurements of AFM 
assessment of TM stiffness, has not yet been quantified. The meaningful application 
of any technique to medical research first requires characterization of measurement 
error. The purpose of the present study was to quantify test-retest reproducibility of 
the human TM by AFM. 
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2. Methods

The study was conducted in accordance with the tenets of the Declaration of Helsinki 
and the United States Health Insurance Portability and Accountability Act.

A right eye was obtained from a local eye bank (Center for Organ Recovery, and 
Education, Pittsburgh, PA, USA). The donor eye was from a 53-year-old female, 
and tested negative for HIV I/II plus O, HBcAb, HCV/HIV/HB/Nat, RPR. The eye was 
harvested and preserved by the eye bank at ten hours after death. Specifically, the 
eye was stored in Optisol (Chiron Ophthalmics, Irvine, CA, USA) at -8 °C. Seven days 
after harvest, the cornea was removed for transplant and the rim was dissected and 
embedded in Tissue Tek Optimal Cutting Temperature Compound (Sakura Finetek 
USA Inc., Torrance, CA, USA) and stored at -80 °C. Radial 40 μm thick sections were 
cut on a cryostat (Leica CM3050 S cryostat, Leica Microsystems Inc., Buffalo Grove, 
IL, USA) and mounted on charged slides by an histotechnologist certified by the 
American Society for Clinical Pathology (ASCP). 

TM stiffness was quantified by AFM standard accepted methods.14,23,24 Briefly, 
11 tissue sections were reconstituted with phosphate-buffered saline (PBS) and 
allowed to rest at room temperature for 20 minutes. The slide was then placed in a 
MFP-3D-BIO Atomic Force Microscope (Asylum Research, Santa Barbara, CA, USA) 
mounted on an Olympus IX-71 fluorescence microscope (Olympus, Tokyo, Japan). 
Standard commercially available 100 μm long Si3N4 cantilevers, with integrated 
pyramidal tips (Veeco, Inc, Santa Barbara, CA, USA) and a nominal spring constant 
(k) of 0.6 N/m were used to indent the TM cells, calibrating the spring constant of each 
cantilever before each experiment. A 6 x 6 grid was sampled, with indentation points 
evenly distributed over a 20 μm x 20 μm area. The measurement grid was applied 
in each of four areas (Fig. 1), with the AFM controlled by an automated process, at 
a rate of one load/unload cycle per second. The speed of the AFM tip indenting the 
tissue ranged from 2–10 μm/sec. The apparent Young’s modulus of the tissue at each 
indentation point was calculated for each independent force-indentation curve 
using the Sneddon model.25 After completing measurements at each of the four areas 
(session A), the slide was removed and repositioned in the AFM microscope, and all 
measurements were repeated (session B) to quantify test-retest reproducibility. 

Stiffness estimates were acquired at 4 locations in each of the tissue sections 
(Fig. 1). Each stiffness estimate was comprised of the average of 36 (6 x 6 grid, 20 μm 
x 20 μm) individual measurements. This methodology is a standard tissue-sampling 
technique, and offered as a default setting in our commercially available AFM unit. 
Test-retest coefficient of variability was calculated for each of the four measurement 
locations. The average of the four stiffness measurements was calculated to provide 
a mean stiffness for each section, and the test-retest coefficient of variability was 
calculated for the sections. Finally, the 11 tissue stiffness estimates were averaged 
to estimate TM stiffness for the eye. These values were calculated for both AFM runs 
(session A and session B). 



Fig. 1. The TM was measured at four locations from anterior to (1), adjacent to (2, 3), 
and posterior to (4) Schlemm’s canal. Measurements at each location were obtained in 
sessions A and B.
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3. Results

The overall range of Young’s moduli in sessions A and B were 8,376–242,733 and 
5,574–130,352 Pa, respectively (Table 1). Moving from location 1 to 4, Young’s 
moduli consistently decreased during both measurements A and B. However, the 
location-to-location positional drop in Young’s modulus was approximately 15 kPa 
larger in session A compared to session B (13.4 kPa to 15.7 kPa, Fig. 2). The pattern 
of anterior to posterior TM soft ening (Fig. 2) was present throughout the series of 
11 tissue slabs. 

The test-retest coeff icients of variation for the four measurement locations 
(anterior to posterior) were 24.39, 25.28, 12.74, and 14.26%, respectively, with a 
notable drop in the two posterior locations compared to the anterior. The test-retest 
coeff icient for the sections was 19.17% (Table 1). For the entire eye, the test-retest 
coeff icient of variation for the measurement of the TM stiff ness was 17.13%. 



Table 1. Mean and standard deviation stiffness measurements from sessions A and B for 
the 11 tissue sections, with coefficients of variation for each tissue section, the mean of the 
tissue sections, and the eye overall

Section Session A (Pa) Session B (Pa) Coefficient of 
variation

1 15,721 ± 9,434 17,589 ± 5,833 8%
2 8,376 ± 5,573 5,574 ± 2,684 28%
3 31,649 ± 5,485 17,779 ± 16,624 40%
4 32,586 ± 21,439 38,652 ± 17,250 12%
5 25,424 ± 7,478 27,116 ± 12,020 5%
6 35,368 ± 37,272 38,687 ± 17,250 6%
7 38,977 ± 38,589 32,744 ± 25,720 12%
8 220,012 ± 273,144 130,352 ± 108,487 36%
9 49,262 ± 58,909 58,294 ± 68,575 12%
10 242,733 ± 204,551 126,484 ± 89,613 45%
11 83,345 ± 39,141 120,895 ± 90,862 26%
Section mean 71,223 ± 63,720 55,833 ± 43,155 17%

Whole eye 63,528 ± 53,438 21%

Fig. 2. Young’s modulus presented with a trend of decrease with changing position from 
anterior to posterior locations in both sessions A and B; however, there were no statistically 
significant differences observed between the locations.
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Fig. 3. Individual variation between the two sessions was small, with the exception of a 
small number of outliers in each region. Note that, in each case, large variability occurred in 
sections with high stiffness.
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4. Discussion

To date, published estimates of TM stiffness measured by AFM are comprised of single 
averages used to represent an entire eye.7,8,10 They present with variability greater 
than two orders of magnitude. The magnitude of the variability is unexplained, 
leaving the reader to speculate if its source is measurement error, true difference 
between sections, or true differences within the sections and between subjects. For 
example, the ranges of tissue stiffnesses (in kPa) in glaucomatous eyes, by subject, 
were 1.4–329.7, 36.4–382.8, 1.7–565.3, 0.8–552.0, 23.2–126.6, 0.5–206.9, 2.0–243.0, 
1.3–315.8, 5.3–178.5, and 1.5–142.5.7 The present study provides the first systemic 
examination of the sources of variability in AFM measurements of TM stiffness. We 
found that AFM had a test-retest coefficient of variation 17% in an eye, and 19% for 
any individual tissue section. Further, we found that TM stiffness decreased with 
position from anterior to posterior. 

A closer examination of the individual measurements suggests that the majority 
of test-retest discordance occurs in regions of high stiffness (Fig. 3). This may suggest 
that those anterior regions adjacent to the sclera (regions 1 and 2) contain a wider 
variety of small and large TM stiffness, unlike the posterior (regions 3 and 4), which 
present with relatively smaller levels of measurement variability (Fig. 2). Indeed, the 
large differences in those measurement locations with the highest stiffness values 
(Fig. 3) suggest a “hit or miss” phenomenon with respect to local regions of high 
stiffness, especially in the anterior-most location 1. These data suggest that the 
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most stable AFM measurements are to be found in the softer posterior-most region 
of the TM (Figs. 2 and 3). However, limiting assessment to the softest region of the 
TM, by definition, biases the measurements to lower values. 

The establishment of the level of measurement noise is necessary for power 
calculations in future studies. The present data also provides some insights into 
the reality of expected variability within individual tissue sections and individual 
eyes. The unexpected finding of a predictable pattern of regional variation within 
individual tissue slices, representing a predictable “normal” pattern of TM softening 
deep within the angle, may in itself serve as a biomarker for disease. However, in 
the present study, the tissue was completely relaxed, having been sectioned from 
a donor eye. It is possible that this pattern may be altered in living eyes due to the 
influence of muscle activity within the TM itself, as well as via influence of ciliary 
muscle activity transmitted to the TM via connecting tendons.

Regional differences throughout the eye suggest a need for a comprehensive 
assessment of TM stiffness. We do not yet fully understand the relationship between 
varied levels of TM stiffness and regional outflow. However, the presence of softer 
TM in the posterior location is consistent with histological observations in older 
eyes, specifically of pigment deposition in the TM adjacent to Schlemm’s canal, 
but not anterior, marking posterior TM as the area of active flow.26 In this study, we 
found the posterior TM to have lower stiffness, also consistent with the hypothesis 
that regions of active outflow have lower TM stiffness.

The present study has several limitations. As the primary purpose of the study 
was to determine expected variability when measuring TM stiffness in a single eye, 
multiple sections from only one eye were used. Data from one eye are not gener-
alizable to the population, and further studies are needed. However, the pattern 
observed in this human donor eye agrees with previous published findings in a 
rodent model.11 Surprisingly, despite measuring stiffness from an individual eye, 
the present study demonstrated that a wide range of stiffness values is present 
in an eye. Until we better understand the meaning of this range of values, an 
individual mean may not adequately quantify TM stiffness. The data suggest that 
tissue samples from numerous locations around the TM are needed, and within 
each sample, the anterior-posterior location should be documented. Further, in 
the present study, a pyramidal-tipped AFM probe was used. These tips are known 
to yield higher estimations of cell stiffness than spherical tips, but are valid for 
measurements in soft tissue.27 Previous studies have elected to use a probe with a 
spherical tip.7 The use of a pyramidal tip may yield stiffness estimates more affected 
by the TM cell cortex, but stiffness estimates in the present study ranged from a few 
to several hundred kilopascals; far larger than the small differences observed when 
comparing spherical and “sharp” AFM probe tips.28 There was good agreement 
between the first and second measurements of the tissue slices, suggesting that the 
performance of the pyramidal tipped AFM probe was reproducible (Fig 3). Finally, 
rehydrated tissue sections were used in the present study, as opposed to fresh 
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whole-tissue sections. This is an accepted and previously published technique in 
the measurement of stiffness of the biological ophthalmic structures.23,24 

AFM reveals local patterns of TM stiffness in the human eye. The relationship 
between this array of stiffness levels, morphology, and outflow has yet to be 
determined in either cadaveric flow models, or more importantly, in living healthy 
and glaucomatous eyes. Wide regional variation suggests that single value does 
little to fully describe the complex array of TM stiffness levels within the eye, and 
future studies of TM stiffness assessed by AFM should include multiple tissue 
samples from each eye, with documentation of the anterior-posterior location of 
each measurement.
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